Regression modelling on stratified data with the lasso
نویسندگان
چکیده
منابع مشابه
Bayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data
Dynamic panel data models include the important part of medicine, social and economic studies. Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models. The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance. Recently, quantile regression to analyze dynamic pa...
متن کاملBinary logistic regression with stratified survey data
Standard inference techniques are only valid if the design is ignorable. Two approaches that take the design into account are compared using binary logistic regression. The modelbased approach includes relevant design variables as independents and the designbased approach use design weights. The approaches are exemplified using a cross-sectional stratified mail survey, where associations betwee...
متن کاملHomework 2: Lasso Regression
Instructions: Your answers to the questions below, including plots and mathematical work, should be submitted as a single PDF file. It’s preferred that you write your answers using software that typesets mathematics (e.g. LATEX, LYX, or MathJax via iPython), though scanning handwritten work is fine as well. You may find the minted package convenient for including source code in your LATEX docum...
متن کاملRobust Lasso Regression with Student-t Residuals
The lasso, introduced by Robert Tibshirani in 1996, has become one of the most popular techniques for estimating Gaussian linear regression models. An important reason for this popularity is that the lasso can simultaneously estimate all regression parameters as well as select important variables, yielding accurate regression models that are highly interpretable. This paper derives an efficient...
متن کاملQuantile regression with group lasso for classification
Applications of regression models for binary response are very common and models specific to these problems are widely used. Quantile regression for binary response data has recently attracted attention and regularized quantile regression methods have been proposed for high dimensional problems. When the predictors have a natural group structure, such as in the case of categorical predictors co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biometrika
سال: 2017
ISSN: 0006-3444,1464-3510
DOI: 10.1093/biomet/asw065